Memory



Memory is the ability to take in information, store it, and recall it at a later time. In psychology, memory is broken into three stages: encoding, storage, and retrieval. Stages of memory: The three stages ofmemory: encoding, storage, and retrieval. Problems can occur at any stage of the process.


                                                     Image result for introduction of memory

Q- What is a memory?
Ans- Computer memory is any physical device capable of storing information temporarily or permanently. For example, Random Access Memory (RAM), is a volatilememory that stores information on an integrated circuit used by the operating system, software, and hardware.

Q- What are the 3 types of memory?
Ans- In this section we will consider the two types of memory, explicit memory and implicit memory, and then the three major memory stages: sensory, short-term, and long-term .


Explicit Memory

When we assess memory by asking a person to consciously remember things, we are measuring explicit memoryExplicit memory refers to knowledge or experiences that can be consciously remembered. As you can see in Figure 8.2 “Types of Memory”, there are two types of explicit memory: episodic and semanticEpisodic memory refers to the firsthand experiences that we have had (e.g., recollections of our high school graduation day or of the fantastic dinner we had in New York last year). Semantic memory refers to our knowledge of facts and concepts about the world(e.g., that the absolute value of −90 is greater than the absolute value of 9 and that one definition of the word “affect” is “the experience of feeling or emotion”).
Types of Memory: Explicit memory (Semantic and Episodic memory) and Implicit memory (Procedural memory, Priming, and Learning through classical conditioning).
Explicit memory is assessed using measures in which the individual being tested must consciously attempt to remember the information. A recall memory test is a measure of explicit memory that involves bringing from memory information that has previously been remembered. We rely on our recall memory when we take an essay test, because the test requires us to generate previously remembered information. A multiple-choice test is an example of a recognition memory testa measure of explicit memory that involves determining whether information has been seen or learned before.
Your own experiences taking tests will probably lead you to agree with the scientific research finding that recall is more difficult than recognition. Recall, such as required on essay tests, involves two steps: first generating an answer and then determining whether it seems to be the correct one. Recognition, as on multiple-choice test, only involves determining which item from a list seems most correct (Haist, Shimamura, & Squire, 1992). Although they involve different processes, recall and recognition memory measures tend to be correlated. Students who do better on a multiple-choice exam will also, by and large, do better on an essay exam (Bridgeman & Morgan, 1996).
A third way of measuring memory is known as relearning (Nelson, 1985). Measures of relearning (or savings) assess how much more quickly information is processed or learned when it is studied again after it has already been learned but then forgotten. If you have taken some French courses in the past, for instance, you might have forgotten most of the vocabulary you learned. But if you were to work on your French again, you’d learn the vocabulary much faster the second time around. Relearning can be a more sensitive measure of memory than either recall or recognition because it allows assessing memory in terms of “how much” or “how fast” rather than simply “correct” versus “incorrect” responses. Relearning also allows us to measure memory for procedures like driving a car or playing a piano piece, as well as memory for facts and figures.

Implicit Memory

While explicit memory consists of the things that we can consciously report that we know, implicit memory refers to knowledge that we cannot consciously access. However, implicit memory is nevertheless exceedingly important to us because it has a direct effect on our behavior. Implicit memory refers to the influence of experience on behavior, even if the individual is not aware of those influences. As you can see in Figure 8.2 “Types of Memory”, there are three general types of implicit memory: procedural memory, classical conditioning effects, and priming.
Procedural memory refers to our often unexplainable knowledge of how to do things. When we walk from one place to another, speak to another person in English, dial a cell phone, or play a video game, we are using procedural memory. Procedural memory allows us to perform complex tasks, even though we may not be able to explain to others how we do them. There is no way to tell someone how to ride a bicycle; a person has to learn by doing it. The idea of implicit memory helps explain how infants are able to learn. The ability to crawl, walk, and talk are procedures, and these skills are easily and efficiently developed while we are children despite the fact that as adults we have no conscious memory of having learned them.
A second type of implicit memory is classical conditioning effects, in which we learn, often without effort or awareness, to associate neutral stimuli (such as a sound or a light) with another stimulus (such as food), which creates a naturally occurring response, such as enjoyment or salivation. The memory for the association is demonstrated when the conditioned stimulus (the sound) begins to create the same response as the unconditioned stimulus (the food) did before the learning.
The final type of implicit memory is known as priming, or changes in behavior as a result of experiences that have happened frequently or recently. Priming refers both to the activation of knowledge (e.g., we can prime the concept of “kindness” by presenting people with words related to kindness) and to the influence of that activation on behavior (people who are primed with the concept of kindness may act more kindly).
One measure of the influence of priming on implicit memory is the word fragment test, in which a person is asked to fill in missing letters to make words. You can try this yourself: First, try to complete the following word fragments, but work on each one for only three or four seconds. Do any words pop into mind quickly?
_ i b _ a _ y
_ h _ s _ _ i _ n
_ o _ k
_ h _ i s _
Now read the following sentence carefully:
“He got his materials from the shelves, checked them out, and then left the building.”
Then try again to make words out of the word fragments.
I think you might find that it is easier to complete fragments 1 and 3 as “library” and “book,” respectively, after you read the sentence than it was before you read it. However, reading the sentence didn’t really help you to complete fragments 2 and 4 as “physician” and “chaise.” This difference in implicit memory probably occurred because as you read the sentence, the concept of “library” (and perhaps “book”) was primed, even though they were never mentioned explicitly. Once a concept is primed it influences our behaviors, for instance, on word fragment tests.
Our everyday behaviors are influenced by priming in a wide variety of situations. Seeing an advertisement for cigarettes may make us start smoking, seeing the flag of our home country may arouse our patriotism, and seeing a student from a rival school may arouse our competitive spirit. And these influences on our behaviors may occur without our being aware of them.

Research Focus: Priming Outside Awareness Influences Behavior

One of the most important characteristics of implicit memories is that they are frequently formed and used automatically, without much effort or awareness on our part. In one demonstration of the automaticity and influence of priming effects, John Bargh and his colleagues (Bargh, Chen, & Burrows, 1996) conducted a study in which they showed college students lists of five scrambled words, each of which they were to make into a sentence. Furthermore, for half of the research participants, the words were related to stereotypes of the elderly. These participants saw words such as the following:
in Florida retired live people
bingo man the forgetful plays
The other half of the research participants also made sentences, but from words that had nothing to do with elderly stereotypes. The purpose of this task was to prime stereotypes of elderly people in memory for some of the participants but not for others.
The experimenters then assessed whether the priming of elderly stereotypes would have any effect on the students’ behavior—and indeed it did. When the research participant had gathered all of his or her belongings, thinking that the experiment was over, the experimenter thanked him or her for participating and gave directions to the closest elevator. Then, without the participants knowing it, the experimenters recorded the amount of time that the participant spent walking from the doorway of the experimental room toward the elevator. As you can see in Figure 8.3 “Results From Bargh, Chen, and Burrows, 1996”, participants who had made sentences using words related to elderly stereotypes took on the behaviors of the elderly—they walked significantly more slowly as they left the experimental room.
Figure 8.3 Results From Bargh, Chen, and Burrows, 1996
Bargh, Chen, and Burrows (1996) found that priming words associated with the elderly made people walk more slowly.
Bargh, Chen, and Burrows (1996) found that priming words associated with the elderly made people walk more slowly.
To determine if these priming effects occurred out of the awareness of the participants, Bargh and his colleagues asked still another group of students to complete the priming task and then to indicate whether they thought the words they had used to make the sentences had any relationship to each other, or could possibly have influenced their behavior in any way. These students had no awareness of the possibility that the words might have been related to the elderly or could have influenced their behavior.

Stages of Memory: Sensory, Short-Term, and Long-Term Memory

Another way of understanding memory is to think about it in terms of stages that describe the length of time that information remains available to us. According to this approach (see Figure 8.4 “Memory Duration”), information begins in sensory memory, moves to short-term memory, and eventually moves to long-term memory. But not all information makes it through all three stages; most of it is forgotten. Whether the information moves from shorter-duration memory into longer-duration memory or whether it is lost from memory entirely depends on how the information is attended to and processed.

Memory can characterized in terms of stages—the length of time that information remains available to us.

Sensory Memory

Sensory memory refers to the brief storage of sensory information. Sensory memory is a memory buffer that lasts only very briefly and then, unless it is attended to and passed on for more processing, is forgotten. The purpose of sensory memory is to give the brain some time to process the incoming sensations, and to allow us to see the world as an unbroken stream of events rather than as individual pieces.
Visual sensory memory is known as iconic memory. Iconic memory was first studied by the psychologist George Sperling (1960). In his research, Sperling showed participants a display of letters in rows, similar to that shown in Figure 8.5 “Measuring Iconic Memory”. However, the display lasted only about 50 milliseconds (1/20 of a second). Then, Sperling gave his participants a recall test in which they were asked to name all the letters that they could remember. On average, the participants could remember only about one-quarter of the letters that they had seen.
                            Three rows of letters: (U G J X), (P J M B), and (F C A L)
Sperling (1960) showed his participants displays such as this one for only 1/20th of a second. He found that when he cued the participants to report one of the three rows of letters, they could do it, even if the cue was given shortly after the display had been removed. The research demonstrated the existence of iconic memory.
Experience matters: Experienced chess players are able to recall the positions of the game on the right much better than are those who are chess novices. But the experts do no better than the novices in remembering the positions on the left, which cannot occur in a real game.
If information makes it past short term-memory it may enter long-term memory (LTM)memory storage that can hold information for days, months, and years. The capacity of long-term memory is large, and there is no known limit to what we can remember (Wang, Liu, & Wang, 2003). Although we may forget at least some information after we learn it, other things will stay with us forever. In the next section we will discuss the principles of long-term memory.

Key Takeaways

  • Memory refers to the ability to store and retrieve information over time.
  • For some things our memory is very good, but our active cognitive processing of information assures that memory is never an exact replica of what we have experienced.
  • Explicit memory refers to experiences that can be intentionally and consciously remembered, and it is measured using recall, recognition, and relearning. Explicit memory includes episodic and semantic memories.
  • Measures of relearning (also known as savings) assess how much more quickly information is learned when it is studied again after it has already been learned but then forgotten.
  • Implicit memory refers to the influence of experience on behavior, even if the individual is not aware of those influences. The three types of implicit memory are procedural memory, classical conditioning, and priming.
  • Information processing begins in sensory memory, moves to short-term memory, and eventually moves to long-term memory.
  • Maintenance rehearsal and chunking are used to keep information in short-term memory.
  • The capacity of long-term memory is large, and there is no known limit to what we can remember.

Exercises and Critical Thinking

  1. List some situations in which sensory memory is useful for you. What do you think your experience of the stimuli would be like if you had no sensory memory?
  2. Describe a situation in which you need to use working memory to perform a task or solve a problem. How do your working memory skills help you?

References

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. Spence (Ed.), The psychology of learning and motivation (Vol. 2). Oxford, England: Academic Press.
Baddeley, A. D., Vallar, G., & Shallice, T. (1990). The development of the concept of working memory: Implications and contributions of neuropsychology. In G. Vallar & T. Shallice (Eds.), Neuropsychological impairments of short-term memory (pp. 54–73). New York, NY: Cambridge University Press.
Bargh, J. A., Chen, M., & Burrows, L. (1996). Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action. Journal of Personality & Social Psychology, 71, 230–244.
Bridgeman, B., & Morgan, R. (1996). Success in college for students with discrepancies between performance on multiple-choice and essay tests. Journal of Educational Psychology, 88(2), 333–340.
Cowan, N., Lichty, W., & Grove, T. R. (1990). Properties of memory for unattended spoken syllables. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(2), 258–268.
Didierjean, A., & Marmèche, E. (2005). Anticipatory representation of visual basketball scenes by novice and expert players. Visual Cognition, 12(2), 265–283.
Haist, F., Shimamura, A. P., & Squire, L. R. (1992). On the relationship between recall and recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(4), 691–702.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97.
Nelson, T. O. (1985). Ebbinghaus’s contribution to the measurement of retention: Savings during relearning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(3), 472–478.
Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58(3), 193–198.
Simon, H. A., & Chase, W. G. (1973). Skill in chess. American Scientist, 61(4), 394–403.
Solomon, M. (1995). Mozart: A life. New York, NY: Harper Perennial.
Sperling, G. (1960). The information available in brief visual presentation. Psychological Monographs, 74(11), 1–29.
Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133(6), 1038–1066.
Wang, Y., Liu, D., & Wang, Y. (2003). Discovering the capacity of human memory. Brain & Mind, 4(2), 189–198.
Q- What is the meaning of memory in psychology?
Ans- 
Memory is the means by which we draw on our past experiences in order to use this information in the present' (Sternberg, 1999). Memory is the term given to the structures and processes involved in the storage and subsequent retrieval of information.
Q- What are the four types of memory?
Ans- Memory Types
  • Long-Term Memory. Long-term memory is our brain's system for storing, managing, and retrieving information. ...
  • Short-Term Memory. ...
  • Explicit Memory. ...
  • Implicit Memory. ...
  • Autobiographical Memory. ...
  • Memory & Morpheus.

Q- What are the types of memory?
Ans- There are two main kinds of semiconductor memory, volatile and non-volatile. Examples of non-volatile memory are flash memory (used as secondary memory) and ROM, PROM, EPROM and EEPROM memory (used for storing firmware such as BIOS).

Q- What are the 3 stages of memory?
Ans- Encoding, storage, and retrieval are the three stages involved in remembering information. The first stage of memory is encoding. In this stage, we process information in visual, acoustic, or semantic forms.

Q- What are the types of memory loss?
Ans- There are multiple types of amnesia, including retrograde amnesia, anterograde amnesia, and transient global amnesia.
  • Retrograde amnesia. When you have retrograde amnesia, you lose existing, previously made memories. ...
  • Anterograde amnesia. ...
  • Transient global amnesia. ...
  • Infantile amnesia.
Q- How many types of memory are there?
Ans- There are three main distinctions among different types of memory: Implicit vs. Explicit memory. Declarative vs. Procedural memory. Semantic vs. Episodic memory.

Q- Why do we forget?
Ans- The inability to retrieve a memory is one of the most common causes of forgetting. So why are we often unable to retrieve information from memory? One possible explanation of retrieval failure is known as decay theory. According to this theory, a memory trace is created every time a new theory is formed.

Q- How many types of computer memory are there?
Ans- There are two types of memories in computer. b- External Memory - USB Flash Drive, Pen Drive, CD ROM etc.

Q- What is the process of memory?
Ans- The three main processes involved in human memory are therefore encoding, storage and recall (retrieval).

Q- What are the three models of memory?
Ans- This model of memory as a sequence of three stages, from sensory to short-term to long-term memory, rather than as a unitary process, is known as the modal or multi-store or Atkinson-Shiffrin model, after Richard Atkinson and Richard Shiffrin who developed it in 1968, and it remains the most popular model for studying ...

Q- How many types of memory are used in computer?
Ans- Computer memory can be primarily classified into two types: Primary Memory and Secondary Memory. Primary Memory (also called main memory), is used for immediate access of data by the processor.

Q- What is the purpose of human memory?
Ans- Memory is the faculty of the brain by which information is encoded (process often known as Learning), stored, and retrieved when needed. Memory is vital to experiences and related to limbic systems, it is the retention of information over time for the purpose of influencing future action.

Q- Why is it important to have memory?
Ans- Memory plays a big role in our life. It allows us to remember skills that we've learned, or retrieve information that is stored in the brain, or recall a precious moment that occurred in the past. ... You can also think of it as body memory. Breathing is an implicit memory.

Q- How much can short term memory?
Ans- The average span for letters was 7.3 and for numbers it was 9.3. The duration ofshort term memory seems to be between 15 and 30 seconds, according to Atkinson and Shiffrin (1971). Items can be kept in short term memory by repeating them verbally (acoustic encoding), a process known as rehearsal.

Q- How long does short term memory last?
Ans- In general, when anyone refers to memory loss (formally known as amnesia), they are actually talking about long-term memory. So, cognitive psychologists divide memory into the first 15-30 seconds, and they call this short-term memory, and alllllll the rest of memory that lasts beyond 30 seconds is long-term memory.

Q- What is the short term memory?
Ans- Short-term memory (or "primary" or "active memory") is the capacity for holding, but not manipulating, a small amount of information in mind in an active, readily available state for a short period of time

Q- What is the difference between RAM and ROM memory?
Ans- There is one major difference between a read-only memory (ROM) and a random-access memory (RAM) chip: ROM can hold data without power and RAMcannot. Essentially, ROM is meant for permanent storage, and RAM is for temporary storage.

Q- What are the different types of RAM?
Ans- Although all RAM basically serves the same purpose, there are a few different types commonly in use today:
  • Static RAM (SRAM)
  • Dynamic RAM (DRAM)
  • Synchronous Dynamic RAM (SDRAM)
  • Single Data Rate Synchronous Dynamic RAM (SDR SDRAM)
  • Double Data Rate Synchronous Dynamic RAM (DDR SDRAM, DDR2, DDR3, DDR4)

Q- What is primary and secondary memory?
Ans- Secondary storage (also known as external memory or auxiliary storage), differs from primary storage in that it is not directly accessible by the CPU. The computer usually uses its input/output channels to access secondary storage and transfers the desired data using intermediate area in primary storage.

Q- 

Comments

Popular posts from this blog

Q- What is a microprocessor?

I/O Ports and Devices

BIOS